1. The 40-kg block A hangs from a cable as shown. Pulley C is connected by a short link to block E, which rests on a horizontal rail. Knowing that the coefficient of static friction between block E and the rail is 0.30, and neglecting the weight of block E and the friction in the pulleys, determine the maximum allowable value of θ if the system is to remain in equilibrium.

![Diagram of the system](image1)

Fig. 1.

(15分)

2. Determine the x and z components of reaction at the journal bearing A and the tension in cords BC and BD necessary for equilibrium of the rod.

![Diagram of the rod](image2)

Prob. 2.

$F_1 = (-800 \text{kN})$

$F_2 = (350 \text{j}) \text{N}$

(15分)
3. The uniform plank having a weight W and length l is supported at its ends A and B, where the coefficient of static friction is μ, Fig. 8-11a. Determine the greatest angle θ so the plank does not slip. Neglect the thickness of the plank for the calculation.

4. An airplane used to drop water on brushfires is flying horizontally in a straight line at 315 km/h at an altitude of 80 m. Determine the distance d at which the pilot should release the water so that it will hit the fire at B.

![Fig. 4.](image)

5. The magnitude and direction of the velocities of two identical frictionless balls before they strike each other are as shown. Assuming $\epsilon = 0.90$, determine the magnitude and direction of the velocity of each ball after the impact.

!image

6. Please use your words to describe: Statics, Dynamics and Mechanics of Materials (at least 100 words) (15分)

7. Please explain: Rigid body, Non-rigid body, and what we need to take into consideration if the object we calculate are one of these. (at least 100 words) (10分)