1. A conducting material of uniform thickness h and conductivity σ has the shape of a quarter of a flat circular washer, with inner radius a and outer radius b, as illustrated in Fig. 1. Determine the resistance between the end faces. (10%)

2. A coaxial cable with inner radius a and outer radius b, the dielectric between these two conductor has conductivity σ and relative permittivity ε. Determine the resistance (R) and capacitance (C) per unit length in Fig. 2. (12%)

3. Find the magnetic vector potential \mathbf{A} at a distance point of a small circular loop of radius b that carries current I (magnetic dipole) as shown in Fig. 3. Based on the derived \mathbf{A}, please also find the corresponding magnetic field \mathbf{B}. (16%)
4. Please find the magnetic flux density at the center of a rectangular loop carrying a current I, with side width U and V, respectively as shown in Fig.4. (12%)

![Fig.4](image)

5. (a) Please write Maxwell’s Equations in differential form and phasor form, and explain each equation’s physical significance. (12%)

(b) Please write the time-harmonic transmission-line equations. (4%)

(c) If a transmission line characterized by (Z_0, γ) with length l is connected to a load Z_L, please find the expression for the input impedance Z_i. (4%)

6. Determine the mutual inductance between a very long, straight wire and a conducting triangular loop, as shown in Fig. 6. (8%)

![Fig. 6](image)

7. The standing-wave ratio on a lossless 75 (Ω) transmission line terminated in an unknown load impedance is found to be 4. The distance between successive voltage minima is 30 (cm) and the first minimum is located at 6 (cm) from the load. Determine (a) the reflection coefficient Γ and the load impedance Z_L. (6%)

(b) the equivalent length and terminating resistance of a line such that the input impedance is equal to Z_L. (4%)
8. The electric field intensity of a linearly polarized uniform plane wave propagating in the
+z-direction in seawater is \(E = \hat{a}_x 100 \cos \left(2\pi \times 10^6 t \right) \) (V/m) at \(z = 0 \). The constitutive
parameters of seawater are \(\varepsilon_r = 72 \), \(\mu_r = 1 \), and \(\sigma = 4 \) (S/m).
(a) Determine the attenuation constant, phase constant, intrinsic impedance, phase
velocity, wavelength, and skin depth. (6%)
(b) Find the distance at which the amplitude of \(E \) is 1% of its value at \(z = 0 \). (2%)
(c) Write the expressions for \(E(z, t) \) and \(H(z, t) \) at \(z = 0.8 \) (m) as functions of \(t \). (4%)