1. A simple beam AB of I-shaped cross section is loaded as shown in Figure 1. Figure 1(a) is loads diagram. Figure 1(b) is the cross section view. (25%)
 (a) Draw the shear and moment diagrams then determine.
 (b) The maximum shear stress τ_{max}.
 (c) The shear stress τ_{CP} in the joint between the flange and the web (CD section) at point E located at distance 4 meters from A.
 (d) The maximum bending stresses (both tension side σ_{max}^{t} and compression side σ_{max}^{c}).

![Figure 1](image1)

2. Pin-connected members ADB and CD carry a load W applied by a cable-pulley arrangement, as shown in Figure 2. (20%)
 Determine
 (a) The components of the reactions at A and C.
 (b) The axial force, shear force, and moment acting on the cross-section at point G.
 Given: The pulley at B has a radius of 150 mm. Load $W = 1.6$ kN.

![Figure 2](image2)
3. What is the major difference between beam and column? (5%)

4. A simple beam AB loaded by a couple M_0 at the right-hand support is shown in figure 4.
 (25%)

 (a) Evaluate the strain energy of the beam from the bending moment in the beam.

 (b) Determine the angle of rotation θ_B by applying Castigliano’s theorem to the strain energy obtained in solution of (a).

 (c) Determine the angle of rotation θ_A by applying Castigliano’s theorem.

![Figure 4](image)

5. A cantilever beam of length $2L$ is loaded by a concentrated load P acting at the free end. The beam is supported at B by a linearly elastic spring with stiffness k. Please note that there exists a prescribed gap Δ between the support B and the beam. (25%)

 (a) Let $k = 6EI/L^3$. Use the method of superposition to solve for all reactions.

 (b) What are the reactions when $k \to \infty$

![Figure 5](image)