1. (15%) **Axiom:** If \(\{C_n\} \) is a sequence of sets in a \(\sigma \)-field and \(C_i \) and \(C_j \) are disjoint for all \(i \neq j \), then we have \(P(\bigcup_{n=1}^{\infty} C_n) = \sum_{n=1}^{\infty} P(C_n) \). Now let \(\{A_n\} \) be a decreasing sequence of events. Then, applying this axiom, prove that

\[
\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n) = P(\bigcap_{n=1}^{\infty} A_n).
\]

2. (12%) Let \(X \) and \(Y \) have the probability density function (pdf) \(f(x, y) = 8xy \) for \(0 < x < y < 1 \); and \(f(x, y) = 0 \) elsewhere. If \(W = XY^2 \) and \(Z = X/Y \), then \(E(W) = \) and \(E(Z) = \)

3. (23%) Answer (or prove) the following questions:

1. What is the **Markov’s Inequality**? (5%)
2. What is the **Chebyshev’s Inequality**? (5%)
3. What is the **Jensen’s Inequality**? (5%)
4. Let \(X \) be a positive random variable.
 Prove that \(E(1/X) \geq 1/E(X) \). (8%)

4. (40%) Let \(X \) and \(Y \) have the joint pdf \(f(x, y) = 1 \), where \(|y| < x \) and \(0 < x < 1 \).

1. Find the marginal pdf of \(X \). (2%)
2. Find the conditional expectation of \(Y \) given \(X = x \). (3%)
3. Find the marginal pdf of \(Y \). (5%)
4. Find the conditional expectation of \(X \) given \(Y = y \). (10%)
5. Evaluate the correlation coefficient of \(X \) and \(Y \). (10%)
6. Evaluate \(P(X + Y \leq 1) \). (10%)

5. (10%) Let \(X \) be from \(N(\mu, 1) \) and \(Y = [1 - \Phi(X)]/\phi(X) \), where \(\Phi \) and \(\phi \) denote the distribution function and the density of \(N(0, 1) \), respectively. Evaluate \(E[Y] \).